Salt Marsh Restoration and Climate Adaptation Strategies

Danielle Perry, PhD NOAA Restoration Center October 18, 2024

Salt Marsh 101

Marsh Growth/ Accretion

- Plant production above (leaves) and below ground (roots)
- Organic matter accumulation
- Mineral sediment deposition

Salt marshes occur where land and ocean meet. They are a dynamic landscape that can grow and expand if conditions are favorable.

Salt Marsh Importance

Buffer zone

- Filtration
- Reduce flooding
- Lessen wave energy

Resource for fisheries and bird species

- Refuge
- Food
- Nursery

Salt Marshes as a Climate Solution

Data Source: McLeod et al. 2011

Pathways for Climate Change Mitigation in Blue Carbon Ecosystems

CO2 2

uptake

 CH_4

emissions

Carbon Storage Lateral Flux: Export and Storage in the Ocean

Sea Level Rise

Impacts

- Changes in plant cover
- Increase in plant death
- Ponding
- Marsh erosion

Response

- Salt marsh migration
- Coastal squeeze

Management

- Restoration
- Climate change adaptation

Restoration and Climate Change Adaptation Strategies

- 1. Hydrological Restoration
 - Tidal Restriction Removal
 - Runnels
 - Ditch Remediation
- 2. Sediment Enhancement

<image>

Sediment Enhancement

Remediated Ditch

Climate Change Adaptation and Restoration Strategies

- 1. Hydrological Restoration
 - Tidal Restriction Removal
 - Runnels
 - Ditch Remediation

2. Sediment Enhancement

Sediment Enhancement

Remediated Ditch

Culvert Upgrade: Eagle Neck Creek

- Restoration Actions
 - Installed 8' by 8' open bottom box culvert
 - Salt marsh monitoring
- Project Partners
 - Woods Hole Group
 - MA DER
 - Town of Truro
 - Fuss & O'Neill
 - USDA- NRCS
 - National Park Service

Salt Marsh Runnels

Photo Credit. W. Ferguson

Parker River National Wildlife Refuge

Allens Pond Wildlife Sanctuary:

9/2023

Ditch Remediation

Untreated

Embankments and ditches - legacy effects of agriculture interacting with greater rates of Sea Level Rise:

- Ditches lower water tables and allow oxygen to convert peat to CO₂ (elevation falls) marshes become more susceptible to drowning
- Embankments from farming and ditch spoils hold water on the marsh, leading to plant die-off, mega-pools and elevation loss

Subsidence is caused by Ditching AND Embankments

Parker River National Wildlife Refuge: Ditch Remediation October 2022

Climate Change Adaptation and Restoration Strategies

- 1. Hydrological **Restoration**
 - **Tidal Restriction** Removal
 - Runnels
 - **Ditch Remediation**
- 2. Sediment Enhancement

Runnel

Sediment Enhancement

Remediated Ditch

Sediment Enhancement

FIGURE 2

Α

Time series photographs of the Ninigret sediment placement marsh. Initial conditions (A), immediately after sediment placement (B), first growing season after sediment placement (C), and second (D), third (E) and fourth (F) growing seasons (2018–2020).

Questions?

Danielle Perry, PhD danielle.perry@noaa.gov

